Chapter 2

Normed Spaces

2.1 Definition of a normed space

Recall that by a vector space over an algebraic field \mathbb{F} we understand a nonempty set X equipped with two operations:

- 1. $(x, y) \longrightarrow x + y$ from $X \times X$ into X, (addition).
- 2. $(\lambda, x) \longrightarrow \lambda x$ from $\mathbb{F} \times X$ into X, (scalar multiplication).

Elements of the vector space X are called vectors, elements of the field \mathbb{F} are called scalars (or sometimes numbers). Here we consider only real vector spaces with $\mathbb{F} = \mathbb{R}$. A norm on a vector space is function which roughly speaking has a meaning of the length of a vector. More precisely, we have the following definition.

Definition 2.1.1. (Normed space). Let X be a vector space. A norm on X is a function $\|\cdot\| : X \longrightarrow \mathbb{R}$, which satisfy the following properties:

(N1)
$$||x|| = 0$$
 if and only if $x = 0$.

(N2) $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in X$ and $\lambda \in \mathbb{R}$. (scalar multiplication)

(N3) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$. (Triangle inequality)

A normed space is a pair $(X, \|\cdot\|)$, where X is a vector space and $\|\cdot\|$ is a normed on X.

Example 2.1.2. (Positivity of the norm). Let $(X, \|\cdot\|)$ be a normed space. Prove that

$$(N1') ||x|| \ge 0 \forall x \in X. (2.1)$$

Example

 $(\mathbb{R}, |\cdot|)$ is normed space.

Theorem 2.1.3. Let $(X, \|\cdot\|)$ be a normed space. Then

$$d(x,y) := \|x - y\|$$
(2.2)

defines a metric on X, i.e. (X, d) is a metric space.

Remark 2.1.4. Theorem 2.1.3 states that every normed space is also a metric space with the induced metric. However, not every metric space can be made into a normed space. For example, the metric space of all positive rational numbers Q_+ with the metric $d(x, y) = |log(\frac{x}{y})|$ from Example 1.1.4 is not a normed space, simply because Q_+ is not a vector space.

2.2 Vector space \mathbb{R}^N

The space \mathbb{R}^N of N-vectors of real numbers, defined in Example 1.1.6 is a vector space. The number N is called the dimension of the space \mathbb{R}^N . For vectors $x, y \in \mathbb{R}^N$ and scalar $\lambda \in \mathbb{R}$, the addition and scalar multiplication are defined as follows:

$$x + y = (x_1 + y_1, x_2 + y_2, \cdots, x_N + y_N)$$

 $\lambda x = (\lambda x_1, \lambda x_2, \cdots, \lambda x_N)$

Proposition 2.2.1. (The Cauchy-Schwarz inequality). For any $x, y \in \mathbb{R}^N$,

$$|x \cdot y| \le ||x|| ||y||. \tag{2.3}$$

Example 2.2.2. (Euclidean norm on \mathbb{R}^N). The function

$$|x||_2 = \sqrt{|x_1|^2 + \dots + |x_N|^2} = \sqrt{\sum_{i=1}^N |x_i|^2}$$

defines the Euclidean norm on \mathbb{R}^N .

Corollary 2.2.3. (\mathbb{R}^N, d_2) is metric space

Example 2.2.4. (Taxi-cab and ∞ norm on \mathbb{R}^N). Let \mathbb{R}^N be the Ndimensional vector space as before. We define the taxi-cab norm $\|\cdot\|_1$: $\mathbb{R}^N \longrightarrow \mathbb{R}$ by

$$||x||_1 = |x_1| + \dots + |x_N|$$

and infinity norm $\|\cdot\|_{\infty}: \mathbb{R}^N \longrightarrow \mathbb{R}$ by

$$||x||_{\infty} = \max\{|x_1|, \cdots, |x_N|\}$$

Example

Explain why $||x|| = \min\{x_1, x_2\}$ does not define a norm on \mathbb{R}^2 .

2.3 Vector space of continuous functions C([a, b])

Let C([a, b]) be the vector space of all continuous functions on the closed interval [a, b]. For functions $f, g \in C([a, b])$ and scalar $\lambda \in \mathbb{R}$, the addition and scalar multiplication are defined in a natural pointwise way:

$$(f+g)(x) = f(x) + g(x)$$

$$(\lambda f)(x) = \lambda f(x)$$

Example 2.3.1. (Uniform convergence norm on C([a, b])). The function

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$$

is a norm on C([a, b]), known as a uniform convergence norm, or ∞ -norm on C([a, b]).