Chapter 2

Normed Spaces

2.1 Definition of a normed space

Recall that by a vector space over an algebraic field \mathbb{F} we understand a nonempty set X equipped with two operations:

1. $(x, y) \longrightarrow x+y$ from $X \times X$ into X, (addition).
2. $(\lambda, x) \longrightarrow \lambda x$ from $\mathbb{F} \times X$ into X, (scalar multiplication).

Elements of the vector space X are called vectors, elements of the field \mathbb{F} are called scalars (or sometimes numbers). Here we consider only real vector spaces with $\mathbb{F}=\mathbb{R}$. A norm on a vector space is function which roughly speaking has a meaning of the length of a vector. More precisely, we have the following definition.

Definition 2.1.1. (Normed space). Let X be a vector space. A norm on X is a function $\|\cdot\|: X \longrightarrow \mathbb{R}$, which satisfy the following properties:
(N1) $\|x\|=0$ if and only if $x=0$.
(N2) $\|\lambda x\|=|\lambda|\|x\|$ for all $x \in X$ and $\lambda \in \mathbb{R}$. (scalar multiplication)
(N3) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X . \quad$ (Triangle inequality)

A normed space is a pair $(X,\|\cdot\|)$, where X is a vector space and $\|\cdot\|$ is a normed on X.

Example 2.1.2. (Positivity of the norm). Let ($X,\|\cdot\|$) be a normed space. Prove that

$$
\begin{equation*}
\left(N 1^{\prime}\right) \quad\|x\| \geq 0 \quad \forall x \in X \tag{2.1}
\end{equation*}
$$

Example

$(\mathbb{R},|\cdot|)$ is normed space.
Theorem 2.1.3. Let $(X,\|\cdot\|)$ be a normed space. Then

$$
\begin{equation*}
d(x, y):=\|x-y\| \tag{2.2}
\end{equation*}
$$

defines a metric on X, i.e. (X, d) is a metric space.
Remark 2.1.4. Theorem 2.1.3 states that every normed space is also a metric space with the induced metric. However, not every metric space can be made into a normed space. For example, the metric space of all positive rational numbers Q_{+}with the metric $d(x, y)=\left|\log \left(\frac{x}{y}\right)\right|$ from Example 1.1.4 is not a normed space, simply because Q_{+}is not a vector space.

2.2 Vector space \mathbb{R}^{N}

The space \mathbb{R}^{N} of N-vectors of real numbers, defined in Example 1.1.6 is a vector space. The number N is called the dimension of the space \mathbb{R}^{N}. For vectors $x, y \in \mathbb{R}^{N}$ and scalar $\lambda \in \mathbb{R}$, the addition and scalar multiplication are defined as follows:

$$
\begin{gathered}
x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}, \cdots, x_{N}+y_{N}\right) \\
\lambda x=\left(\lambda x_{1}, \lambda x_{2}, \cdots, \lambda x_{N}\right)
\end{gathered}
$$

Proposition 2.2.1. (The Cauchy-Schwarz inequality). For any $x, y \in \mathbb{R}^{N}$,

$$
\begin{equation*}
|x \cdot y| \leq\|x\|\|y\| . \tag{2.3}
\end{equation*}
$$

Example 2.2.2. (Euclidean norm on \mathbb{R}^{N}). The function

$$
\|x\|_{2}=\sqrt{\left|x_{1}\right|^{2}+\cdots+\left|x_{N}\right|^{2}}=\sqrt{\sum_{i=1}^{N}\left|x_{i}\right|^{2}}
$$

defines the Euclidean norm on \mathbb{R}^{N}.
Corollary 2.2.3. $\left(\mathbb{R}^{N}, d_{2}\right)$ is metric space
Example 2.2.4. (Taxi-cab and ∞ norm on R^{N}). Let \mathbb{R}^{N} be the N dimensional vector space as before. We define the taxi-cab norm $\|\cdot\|_{1}$: $\mathbb{R}^{N} \longrightarrow \mathbb{R}$ by

$$
\|x\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{N}\right|
$$

and infinity norm $\|\cdot\|_{\infty}: \mathbb{R}^{N} \longrightarrow \mathbb{R}$ by

$$
\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \cdots,\left|x_{N}\right|\right\}
$$

Example

Explain why $\|x\|=\min \left\{x_{1}, x_{2}\right\}$ does not define a norm on \mathbb{R}^{2}.

2.3 Vector space of continuous functions $C([a, b])$

Let $C([a, b])$ be the vector space of all continuous functions on the closed interval $[a, b]$. For functions $f, g \in C([a, b])$ and scalar $\lambda \in \mathbb{R}$, the addition and scalar multiplication are defined in a natural pointwise way:

$$
(f+g)(x)=f(x)+g(x)
$$

$$
(\lambda f)(x)=\lambda f(x)
$$

Example 2.3.1. (Uniform convergence norm on $C([a, b])$). The function

$$
\|f\|_{\infty}=\max _{x \in[a, b]}|f(x)|
$$

is a norm on $C([a, b])$, known as a uniform convergence norm, or ∞-norm on $C([a, b])$.

